Open Access Article
Advances in International Psychology. 2024; 6: (1) ; 49-53 ; DOI: 10.12208/j.aip.20240010.
Intelligent recommendation system based on user psychological characteristics: personality and interests
基于用户心理特征的智能推荐系统:性格与兴趣
作者:
邓嘉颖1 *,
巫林辉2,
陈梦云3
1广州中医药大学公共卫生与管理学院 广东广州
2广东工业大学计算机学院 广东广州
3广州中医院大学深圳临床医学院 广东广州
*通讯作者:
邓嘉颖,单位:广州中医药大学公共卫生与管理学院 广东广州;
发布时间: 2024-12-29 总浏览量: 87
PDF 全文下载
引用本文
摘要
随着信息技术的飞速发展和互联网的普及,智能推荐系统应运而生,通过分析用户的历史行为、偏好及心理特征,为用户提供个性化的信息推荐服务。其中,基于用户性格与兴趣的推荐系统成为研究热点。本文首先阐述了用户心理特征在推荐系统中的重要性,接着分析了用户性格与兴趣的具体特征,并深入探讨了基于用户性格与兴趣的推荐系统的原理,包括数据收集与处理、用户性格与兴趣建模、推荐算法设计与实现以及推荐结果生成与优化。文章还介绍了该系统在电商平台、社交媒体、在线音乐平台和在线教育平台等多个领域的应用案例,并指出了其面临的挑战,如数据隐私保护、冷启动问题、多样性与新颖性平衡以及算法偏见与公平性等。最后,文章展望了基于用户性格与兴趣的推荐系统的未来发展方向,包括深度融合心理学理论、跨平台数据整合与分析、实时性与动态性、智能化与自主化以及社交化与互动性。
关键词: 智能推荐系统;用户心理特征;性格与兴趣;数据收集与处理
Abstract
With the rapid development of information technology and the widespread use of the Internet, intelligent recommendation systems have emerged, providing personalized information recommendation services to users by analyzing their historical behaviors, preferences, and psychological characteristics. Among them, recommendation systems based on user personality and interests have become a research hotspot. This paper first elaborates on the importance of user psychological characteristics in recommendation systems, then analyzes the specific characteristics of user personality and interests, and delves into the principles of recommendation systems based on these characteristics, including data collection and processing, user personality and interest modeling, design and implementation of recommendation algorithms, as well as the generation and optimization of recommendation results. The paper also introduces application cases of this system in various fields such as e-commerce platforms, social media, online music platforms, and online education platforms, and points out the challenges it faces, including data privacy protection, the cold start problem, the balance between diversity and novelty, as well as algorithm bias and fairness. Finally, the paper looks ahead to the future development directions of recommendation systems based on user personality and interests, including deep integration with psychological theories, cross-platform data integration and analysis, real-time and dynamic capabilities, intelligence and autonomy, as well as socialization and interactivity.
Key words: Intelligent recommendation system; User psychological characteristics; Personality and interests; Data collection and processing
参考文献 References
[1] 赵立,付兵. 如何吸引我:个性化推荐促进用户习惯形成的作用机制 [J/OL]. 财经论丛, 1-13[2024-12-05].
[2] 赵凯锐,羊英. 防用户心理抗拒的的短视频推荐方法新颖度提升研究 [J]. 上海第二工业大学学报, 2024, 41 (03): 321-329.
[3] 黄英辉,刘辉,王伟军,等. 心理图式在应对推荐系统用户过度特化问题中的作用:基于机器学习的实证研究 [J]. 图书与情报, 2024, (04): 118-130.
[4] 万月珍. 移动短视频平台推荐信息特征对用户粘性的影响研究[D]. 西安理工大学, 2023.
[5] 苏忻洁. 考虑评分与流行度偏差的用户个性化推荐研究[D]. 哈尔滨商业大学, 2023.
[6] 周锡雄. 基于用户心理分析的知识众包表现提升研究[D]. 华东师范大学, 2023.
[7] 焦杰. 基于用户体验的阅读类APP创新优化研究[D]. 河北工业大学, 2020. [8]田间. 基于用户心理挖掘与分析的个性化推荐方法研究[D]. 哈尔滨理工大学, 2019.
[8] 李颖. 基于微博语言使用特征的用户心境状态预测研究[D]. 华中师范大学, 2018.
引用本文
邓嘉颖, 巫林辉, 陈梦云, 基于用户心理特征的智能推荐系统:性格与兴趣[J]. 国际心理学进展, 2024; 6: (1) : 49-53.